Abstract

Mitotic cell fusion induced Premature Chromosome Condensation (G0-PCC) assay in human lymphocytes allows rapid detection of cytogenetic damage in interphase stage, within few hours after blood collection. Hence, it is the most suitable method for rapid and high dose biodosimetry. Mitotic cells, used for G0-PCC could be either freshly isolated or previously cryo-preserved. However, under emergency scenarios, only cryo-preserved cells can be relied upon, fresh isolation will only delay the process by 18–24 h. Impact of cryopreservation on mitotic cells and their efficacy to induce PCC are not reported. In the present study, we investigated effect of cryopreservation on mitotic cells and refined the parameters for G0-PCC. More than 95% of the cells were recoverable after 4 months of cryopreservation, within 20 min recovery at 37 °C, without significant change in the mitotic index or viability. Recovered mitotic cells have shown mitotic index of 89 ± 4% and viability of 90 ± 4%, similar to that of freshly isolated cells. Decrease in metaphases was observed within 40 min after recovery as the mitotic cells progressed through cell cycle and reduced to 21% at 1 h. Nevertheless, in presence of Colcemid, the cells progressed slowly and considerably high metaphase index (60%) persisted up to ~ 2 h. The recovered cells efficiently fused with lymphocytes and induced PCC. Average PCC index varied from 10 to 20%, which did not change with cryopreservation duration. Post fusion incubation duration of 2 h was found to be optimum for proper chromosome condensation. In conclusion, use of cryo-preserved mitotic cells is the most practical approach for rapid biodosimetry. The cells can be recovered quickly and efficiently without alteration in viability or mitotic index. Recovered cells are fully competent to induce G0-PCC.

Highlights

  • Mitotic cell fusion induced Premature Chromosome Condensation ­(G0-PCC) assay in human lymphocytes allows rapid detection of cytogenetic damage in interphase stage, within few hours after blood collection

  • The ­G0-PCC method is most suitable for rapid biodosimetry applications in case of small to large scale radiological accidents[6,7,8,9,10,11,12,13]

  • In combination with Fluorescent in Situ Hybridization (FISH), almost all types of aberrations commonly used in cytogenetic biodosimetry are reported to be quantifiable with ­G0-PCC

Read more

Summary

Introduction

Mitotic cell fusion induced Premature Chromosome Condensation ­(G0-PCC) assay in human lymphocytes allows rapid detection of cytogenetic damage in interphase stage, within few hours after blood collection. The effect of mitotic cell cryopreservation on its viability, mitotic index, and ability to induce PCC is not well reported. Escape of mitotic cells from metaphase with time of recovery was observed by chromosomal spread preparation of cells recovered in presence and absence of Colcemid.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call