Abstract

Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive loss of cognitive function. One of the pathological hallmarks of AD is the formation of neurofibrillary tangles composed of abnormally hyperphosphorylated tau protein, but global deregulation of protein phosphorylation in AD is not well analyzed. Here, we report a pilot investigation of AD phosphoproteome by titanium dioxide enrichment coupled with high resolution LC-MS/MS. During the optimization of the enrichment method, we found that phosphate ion at a low concentration (e.g. 1 mM) worked efficiently as a nonphosphopeptide competitor to reduce background. The procedure was further tuned with respect to peptide-to-bead ratio, phosphopeptide recovery, and purity. Using this refined method and 9 h LC-MS/MS, we analyzed phosphoproteome in one milligram of digested AD brain lysate, identifying 5243 phosphopeptides containing 3715 nonredundant phosphosites on 1455 proteins, including 31 phosphosites on the tau protein. This modified enrichment method is simple and highly efficient. The AD case study demonstrates its feasibility of dissecting phosphoproteome in a limited amount of postmortem human brain. All MS data have been deposited in the ProteomeXchange with identifier PXD001180 (http://proteomecentral.proteomexchange.org/dataset/PXD001180).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.