Abstract
We investigate a generalization to non-Witt stratified spaces of the intersection homology theory of Goresky–MacPherson. The second-named author has described the self-dual sheaves compatible with intersection homology, and the other authors have described a generalization of Cheeger's L2 de Rham cohomology. In this paper we first extend both of these cohomology theories by describing all sheaf complexes in the derived category of constructible sheaves that are compatible with middle perversity intersection cohomology, though not necessarily self-dual. Our main result is that this refined intersection cohomology theory coincides with the analytic de Rham theory on Thom–Mather stratified spaces. The word "refined" is motivated by the fact that the definition of this cohomology theory depends on the choice of an additional structure (mezzo-perversity) which is automatically zero in the case of a Witt space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.