Abstract
Nonnegative matrix factorization (NMF) is one of the most popular data representation methods in the field of computer vision and pattern recognition. High-dimension data are usually assumed to be sampled from the submanifold embedded in the original high-dimension space. To preserve the locality geometric structure of the data, k -nearest neighbor ( k -NN) graph is often constructed to encode the near-neighbor layout structure. However, k -NN graph is based on Euclidean distance, which is sensitive to noise and outliers. In this article, we propose a refined-graph regularized nonnegative matrix factorization by employing a manifold regularized least-squares regression (MRLSR) method to compute the refined graph. In particular, each sample is represented by the whole dataset regularized with ℓ 2 -norm and Laplacian regularizer. Then a MRLSR graph is constructed based on the representative coefficients of each sample. Moreover, we present two optimization schemes to generate refined-graphs by employing a hard-thresholding technique. We further propose two refined-graph regularized nonnegative matrix factorization methods and use them to perform image clustering. Experimental results on several image datasets reveal that they outperform 11 representative methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Intelligent Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.