Abstract

A set of new and refined principles and definitions in Real Numbers and Vectors are presented. What is a Vector? What is the meaning of the Addition of two Vectors? What is a Real Number? What is the meaning of their signs? What is the meaning of the Addition of two Real Numbers? What is the Summation Principle in Addition Operation? What is the Cancellation Principle in Addition Operation? What is the Meaning of the Multiplication of two Real Numbers? Is Field Theory a law? Can it be proved? All these issues are addressed in this paper. With better pictures and graphical presentations, proof of Field Theories in Real Numbers and Vectors including Commutativity, Associativity and Distributivity are also proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.