Abstract
Abstract. Many nations are challenged by landscape fires. A confident knowledge of the area and distribution of burning is crucial to monitor these fires and to assess how they might best be reduced. Given the differences that arise using different detection approaches, and the uncertainties surrounding burned-area estimates, their relative merits require evaluation. Here we propose, illustrate, and examine one promising approach for Indonesia where recurring forest and peatland fires have become an international crisis. Drawing on Sentinel-2 satellite time-series analysis, we present and validate new 2019 burned-area estimates for Indonesia. The corresponding burned-area map is available at https://doi.org/10.5281/zenodo.4551243 (Gaveau et al., 2021a). We show that >3.11 million hectares (Mha) burned in 2019. This burned-area extent is double the Landsat-derived official estimate of 1.64 Mha from the Indonesian Ministry of Environment and Forestry and 50 % more that the MODIS MCD64A1 burned-area estimate of 2.03 Mha. Though we observed proportionally less peatland burning (31 % vs. 39 % and 40 % for the official and MCD64A1 products, respectively), in absolute terms we still observed a greater area of peatland affected (0.96 Mha) than the official estimate (0.64 Mha). This new burned-area dataset has greater reliability than these alternatives, attaining a user accuracy of 97.9 % (CI: 97.1 %–98.8 %) compared to 95.1 % (CI: 93.5 %–96.7 %) and 76 % (CI: 73.3 %–78.7 %), respectively. It omits fewer burned areas, particularly smaller- (<100 ha) to intermediate-sized (100–1000 ha) burns, attaining a producer accuracy of 75.6 % (CI: 68.3 %–83.0 %) compared to 49.5 % (CI: 42.5 %–56.6 %) and 53.1 % (CI: 45.8 %–60.5 %), respectively. The frequency–area distribution of the Sentinel-2 burn scars follows the apparent fractal-like power law or Pareto pattern often reported in other fire studies, suggesting good detection over several magnitudes of scale. Our relatively accurate estimates have important implications for carbon-emission calculations from forest and peatland fires in Indonesia.
Highlights
Accurate burned-area maps are key to characterising landscape fires, clarifying emissions, and identifying the probable causes
We estimate 3.11 million hectares (Mha) burned in 2019 across Indonesia, of which 31 % was on peat (Fig. 5)
Official burned-area estimates, based on visual interpretation of Landsat 8 imagery, report only about half as much burned area, at 1.64 Mha, of which 39 % was on peat
Summary
Accurate burned-area maps are key to characterising landscape fires, clarifying emissions, and identifying the probable causes. Such information is needed to target interventions; to assess policies and practices intended to reduce or control fires, such as law enforcement and restoration of fireprone degraded lands; and to measure progress towards international climate commitments (Sloan et al, 2021). We focus on Indonesia where recurring forest and peatland fires have become an international crisis (Tacconi, 2016) These concerns arise from the large carbon emissions associated with these fires and the impact of associated aerosol emissions for human health in the wider region Other impacts include loss and degradation of habitats with high conservation values and the associated consequences for impacted wildlife (Harrison et al, 2016)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.