Abstract

This paper proposes a refined beam formulation with displacement variables only. Lagrange-type polynomials, in fact, are used to interpolate the displacement field over the beam cross-section. Three- (L3), four- (L4), and nine-point (L9) polynomials are considered which lead to linear, quasi-linear (bilinear), and quadratic displacement field approximations over the beam cross-section. Finite elements are obtained by employing the principle of virtual displacements in conjunction with the Unified Formulation (UF). With UF application the finite element matrices and vectors are expressed in terms of fundamental nuclei whose forms do not depend on the assumptions made (L3, L4, or L9). Additional refined beam models are implemented by introducing further discretizations over the beam cross-section in terms of the implemented L3, L4, and L9 elements. A number of numerical problems have been solved and compared with results given by classical beam theories (Euler-Bernoulli and Timoshenko), refined beam theories based on the use of Taylor-type expansions in the neighborhood of the beam axis, and solid element models from commercial codes. Poisson locking correction is analyzed. Applications to compact, thin-walled open/closed sections are discussed. The investigation conducted shows that: (1) the proposed formulation is very suitable to increase accuracy when localized effects have to be detected; (2) it leads to shell-like results in case of thin-walled closed cross-section analysis as well as in open cross-section analysis; (3) it allows us to modify the boundary conditions over the cross-section easily by introducing localized constraints; (4) it allows us to introduce geometrical boundary conditions along the beam axis which lead to plate/shell-like cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call