Abstract
Generalizing results by J. Ford, J. W. Rogers, Jr. and H. Kato we prove that (1) a map f from a G-like continuum onto a graph G is refinable iff f is monotone; (2) a graph G is an arc or a simple closed curve iff every G-like continuum that contains no nonboundary indecomposable subcontinuum admits a monotone map onto G. We prove that if bonding maps in the inverse sequence of compact spaces are refinable then the projections of the inverse limit onto factor spaces are refinable. We use this fact to show that refinable maps do not preserve completely regular or totally regular continua.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.