Abstract
ABSTRACT In this paper the convergence behavior of a variant of Newton’s method based on the root mean square for solving nonlinear equations is proposed. The convergence properties of this method for solving non linear equations which have simple or multiple roots have been discussed and it is shown that it converges cubically to simple roots and linearly to multiple roots. Moreover, the values of the corresponding asymptotic error constants of convergence are determined. Theoretical results have been verified on the relevant numerical problems. A comparison of the efficiency of this method with other mean-based Newton’s methods is also included. Convergence behavior and error equations are also exhibited graphically for comparison on considering a particular example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.