Abstract
In this work, we present a method to characterize the transmission matrices of complex scattering media using a physics-informed, multi-plane neural network (MPNN) without the requirement of a known optical reference field. We use this method to accurately measure the transmission matrix of a commercial multi-mode fiber without the problems of output-phase ambiguity and dark spots, leading to up to 58% improvement in focusing efficiency compared with phase-stepping holography. We demonstrate how our method is significantly more noise-robust than phase-stepping holography and show how it can be generalized to characterize a cascade of transmission matrices, allowing one to control the propagation of light between independent scattering media. This work presents an essential tool for accurate light control through complex media, with applications ranging from classical optical networks, biomedical imaging, to quantum information processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.