Abstract

BackgroundT1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transferability of a T1 mapping method and determined the reference values of healthy human myocardium in a multicenter setting.MethodsHealthy subjects (n = 102; mean age 41 years (range 17–83), male, n = 53 (52%)), with no previous medical history, and normotensive low risk subjects (n=113) referred for clinical cardiovascular magnetic resonance (CMR) were examined. Further inclusion criteria for all were absence of regular medication and subsequently normal findings of routine CMR. All subjects underwent T1 mapping using a uniform imaging set-up (modified Look- Locker inversion recovery, MOLLI, using scheme 3(3)3(3)5)) on 1.5 Tesla (T) and 3 T Philips scanners. Native T1-maps were acquired in a single midventricular short axis slice and repeated 20 minutes following gadobutrol. Reference values were obtained for native T1 and gadolinium-based partition coefficients, λ and extracellular volume fraction (ECV) in a core lab using standardized postprocessing.ResultsIn healthy controls, mean native T1 values were 950 ± 21 msec at 1.5 T and 1052 ± 23 at 3 T. λ and ECV values were 0.44 ± 0.06 and 0.25 ± 0.04 at 1.5 T, and 0.44 ± 0.07 and 0.26 ± 0.04 at 3 T, respectively. There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values. The entire cohort showed no correlation between age, gender and native T1. Cross-center comparisons of mean values showed no significant difference for any of the T1 indices at any field strength. There were considerable regional differences in segmental T1 values. λ and ECV were found to be dose dependent. There was excellent inter- and intraobserver reproducibility for measurement of native septal T1.ConclusionWe show transferability for a unifying T1 mapping methodology in a multicenter setting. We provide reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites.Electronic supplementary materialThe online version of this article (doi:10.1186/s12968-014-0069-x) contains supplementary material, which is available to authorized users.

Highlights

  • T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation

  • There were no differences in mean age or gender representation and routine cardiovascular magnetic resonance (CMR) measures between field strengths (p > 0.05), as well as between the two groups (Figure 2)

  • There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values (Figure 2)

Read more

Summary

Introduction

T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. LGE relies on visual and semi-quantitative determination of relative myocardial differences commonly presenting with characteristic patterns of LGE distribution [6]. As it requires regional relative differences between normal and abnormal tissue, it is limited in revealing diffuse myocardial disease, where abnormal and normal tissue are intertwined [7]. Recent advances in image acquisition and quantitative postprocessing allow fast tissue characterisation based on the absolute quantifiable differences in recovery rates of longitudinal magnetisation by T1 mapping [8]. T1 mapping is emerging as a robust and highly reproducible application to provide meaningful measures reflecting biologically important myocardial properties [9]. Emerging evidence shows that myocardial T1-values correlate with the content of underlying myocardial fibrosis, they are abnormal in a variety of heart conditions and reflect pathological substrates such as oedema or infiltration [9]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.