Abstract

Current non-invasive near-infrared spectroscopy (NIRS) tissue oximetry suffers from suboptimal reproducibility over probe repositioning, hindering clinical threshold establishment. Time Domain-NIRS (TD-NIRS) offers higher precision but lacks sufficient paediatric data, preventing effective clinical application. We aimed to establish reference ranges for cerebral and mid-upper arm (MUA) tissue haemodynamics in paediatric subjects using TD-NIRS and explore correlations with auxological variables. TD-NIRS measurements were conducted acquiring data from cerebral and MUA regions with the NIRSBOX tissue oximeter. Morphological and clinically relevant information were collected to explore potential correlations with TD-NIRS derived parameters. TD-NIRS assessment was applied in 350 children (8.4 ± 5.0 years). Precision of TD-NIRS was demonstrated with standard deviations of 0.9% (StO2) and 4.2 μM (tHb) for frontotemporal cerebral cortex, and 0.8% (StO2) and 3.7 μM (tHb) for MUA. No user dependency was observed. The trends of values for cerebral and peripheral regions vary differently according to age and auxological parameters. This study reports resting-state optical and haemodynamic values for a healthy paediatric population, providing a foundation for future investigations into clinically relevant deviations in these parameters. Furthermore, correlations with anthropometric and demographic values provide valuable insights for a deeper understanding of tissue haemodynamic evolution in childhood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.