Abstract
In this paper we present an image predictive controller for an eye-in-hand-type servoing architecture, composed of a 6-d.o.f. robot and a camera mounted on the gripper. A novel architecture for integrating reference trajectory and image prediction is proposed for use in predictive control of visual servoing systems. In the proposed method, a new predictor is developed based on the relation between the camera velocity and the time variation of the visual features given by the interaction matrix. The image-based predictor generates the future trajectories of a visual feature ensemble when past and future camera velocities are known. In addition, a reference trajectory is introduced to define the way how to reach the desired features over the prediction horizon starting from the current features. The advantages of the new architecture are the reference trajectory used for the first time in the sense of the predictive control and the predictor based on a local model. Simulations reveal the efficiency of the proposed architecture to control a 6-d.o.f. robot manipulator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.