Abstract

This paper considers a class of space fractional partial differential equations (FPDEs) that describe gas pressures in fractured media. First, the well-posedness, uniqueness, and the stability in $L_(\infty{R})$of the considered FPDEs are investigated. Then, the reference tracking problem is studied to track the pressure gradient at a downstream location of a channel. This requires manipulation of gas pressure at the downstream location and the use of pressure measurements at an upstream location. To achiever this, the backstepping approach is adapted to the space FPDEs. The key challenge in this adaptation is the non-applicability of the Lyapunov theory which is typically used to prove the stability of the target system as, the obtained target system is fractional in space. In addition, a backstepping adaptive observer is designed to jointly estimate both the system's state and the disturbance. The stability of the closed loop (reference tracking controller/observer) is also investigated. Finally, numerical simulations are given to evaluate the efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.