Abstract
We propose a complete framework for the detection, astrometry, and photometry of faint companions from a sequence of adaptive optics corrected short exposures. The algorithms exploit the difference in statistics between the on-axis and off-axis intensity. Using moderate-Strehl ratio data obtained with the natural guide star adaptive optics system on the Lick Observatory's 3-m Shane Telescope, we compare these methods to the standard approach of PSF fitting. We give detection limits for the Lick system, as well as a first guide to expected accuracy of differential photometry and astrometry with the new techniques. The proposed approach to detection offers a new way of determining dynamic range, while the new algorithms for differential photometry and astrometry yield accurate results for very faint and close-in companions where PSF fitting fails. All three proposed algorithms are self-calibrating, i.e. they do not require observation of a calibration star thus improving the observing efficiency.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.