Abstract

BackgroundSerum cystatin C (SCysC) and serum creatinine (SCr) are two biomarkers used in common practice to estimate the glomerular filtration rate (GFR). For SCysC and SCr to be used in a given population, normal values need to be determined to better assess patients. This study aimed to determine SCysC and SCr reference intervals (RIs) in a Cameroonian adult population and factors susceptible of influencing them.MethodsWe carried-out a cross-sectional study from November 2016 to May 2017 in Yaoundé, Cameroon. Participants were Cameroonians aged 18 years and above, residing inside the country and found in good health at study inclusion. SCysC and SCr were determined by particle-enhanced turbidimetric immunoassay standardized against the ERM-DA471/IFCC reference material and by the IDMS reference modified Jaffe kinetic method, respectively. RIs were determined using the 2.5th and 97.5th percentiles and their respective 90% confidence intervals (CIs). The quantile regression served to identify potential factors likely influencing SCysC and SCr values.ResultsWe included 381 subjects comprising 49.1% females.. RIs for SCysC varied between 0.57 (90%CI: 0.50–0.60) and 1.03 mg/L (90%CI: 1.00–1.10) for females, and from 0.70 (90%CI: 0.60–0.70) to 1.10 mg/L (90%CI: 1.10–1.20) for males. Concerning SCr, its RIs ranged from 0.58 (90%CI: 0.54–0.61) to 1.08 mg/dL (90%CI: 1.02–1.21) for females, and from 0.74 (90%CI: 0.70–0.80) to 1.36 mg/dL (90%CI: 1.30–1.45) for males. Men had significantly higher SCysC and SCr values than women (p <  0.001). Likewise, subjects aged 50 years and above had higher SCysC values in comparison to younger age groups (p <  0.001), which was not the case for SCr values (p = 0.491). Moreover, there was a positive and significant correlation between SCysC and SCr in women (ρ = 0.55, p < 0.001), in men (ρ = 0.39, p < 0.001) and globally (ρ = 0.58; p < 0.001). Furthermore, the sex influenced both biomarkers’ values across all quantile regression models while age and body surface area (BSA) influenced them inconsistently.ConclusionThis study has determined serum cystatin C and serum creatinine reference intervals in an adult Cameroonian population, whose interpretations might take into account the patient’s sex and to a certain extent, his/her age and/or BSA.

Highlights

  • Serum cystatin C (SCysC) and serum creatinine (SCr) are two biomarkers used in common practice to estimate the glomerular filtration rate (GFR)

  • Participants were consecutively recruited during the study period and a minimum of 120 participants was required for each sex group, in line with the International Federation of Clinical Chemistry’s (IFCC) recommendations [9]

  • There were no differences in the distribution of age between male and female participants (p = 0.290)

Read more

Summary

Introduction

Serum cystatin C (SCysC) and serum creatinine (SCr) are two biomarkers used in common practice to estimate the glomerular filtration rate (GFR). Glomerular filtration rate (GFR) is widely accepted as the most useful overall index of kidney function in health and disease [1]. It is best evaluated by clearance measurement of exogenous markers such as inuline, but the complex procedures of these measures limit their routine use [2, 3]. GFR is commonly estimated from serum level of endogenous filtration markers. The most widely used and recommended endogenous marker for initial assessment of GFR is serum creatinine [4]. The steady-state serum creatinine level is determined by factors that include lean tissue mass; it may vary with sex, age, weight and height [3, 5, 6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call