Abstract

Simple SummaryWe report the integrated reference intervals (RIs) of 44 blood biomarkers for presmolts, smolts, postsmolts and adults of intensively farmed Atlantic salmon, coho salmon and rainbow trout species in Chile. Overall, RIs were obtained from 3.059 healthy salmon and trout from 78 different culture centers. Our results indicate that the variability of most blood biomarkers depends on the salmonid species, age range and/or interaction between them, but they are often biologically related to each other. Finally, we provide a standardized pre-analytical protocol to improve preventive vision in aquamedicine. RIs for blood biomarkers specific to salmonid species and age ranges are essential to help improve clinical, zootechnical and nutritional management for the health and welfare of farmed fish.The mission of veterinary clinical pathology is to support the diagnostic process by using tests to measure different blood biomarkers to support decision making about farmed fish health and welfare. The objective of this study is to provide reference intervals (RIs) for 44 key hematological, blood biochemistry, blood gasometry and hormones biomarkers for the three most economically important farmed salmonid species in Chile (Atlantic salmon, coho salmon and rainbow trout) during the freshwater (presmolt and smolt age range) and seawater stages (post-smolt and adult age range). Our results confirmed that the concentration or activity of most blood biomarkers depend on the salmonid species, age range and/or the interaction between them, and they are often biologically related to each other. Erythogram and leukogram profiles revealed a similar distribution in rainbow trout and coho salmon, but those in Atlantic salmon were significantly different. While the activity of the most clinically important plasma enzymes demonstrated a similar profile in Atlantic salmon and rainbow trout, coho salmon demonstrated a significantly different distribution. Plasma electrolyte and mineral profiles showed significant differences between salmonid species, especially for rainbow trout, while Atlantic salmon and coho salmon demonstrated a high degree of similarity. Furthermore, electrolytes, minerals and blood gasometry biomarkers were significantly different between age ranges, suggesting a considerably different distribution between freshwater and seawater-farmed fish. The RIs of clinically healthy fish described in this study take into account the high biological variation of farmed fish in Chile, as the 3.059 individuals came from 78 different fish farms, both freshwater and seawater, and blood samples were collected using the same pre-analytical protocol. Likewise, our study provides the Chilean salmon farming industry with standardized protocols that can be used routinely and provides valuable information to improve the preventive vision of aquamedicine through the application of blood biomarkers to support and optimize health, welfare and husbandry management in the salmon farming industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call