Abstract

Impedance-based damage detection techniques gained popularity among structural health monitoring (SHM) and nondestructive testing (NDT) communities due to their sensitivity to local damage and applicability to complex structures. In general, conventional impedance-based techniques identify damage by comparing “current” impedance signals with “baseline” ones obtained from the pristine condition of a structure. However, in-situ structures are often subject to changing temperature and loading conditions that can adversely affect measured impedance signals and cause false-alarms. In this paper, a “reference-free” impedance method, which does not require direct comparison of the current impedance signals with the previously obtained baseline impedance signals, is developed for crack detection in a plate-like structure. The proposed technique utilizes a single pair of PZTs collocated on the opposite surfaces of a structure to extract mode conversion produced by crack formation. Then, a reference-free damage classifier is developed and performed on the extracted mode conversion for instantaneous damage diagnosis. Numerical simulations and experimental tests have been conducted explicitly considering varying temperature and loading conditions to demonstrate the robustness of the proposed damage detection technique under varying operational and environmental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call