Abstract

An influential model of spatial memory—the so-called reference systems account—proposes that relationships between objects are biased by salient axes (“frames of reference”) provided by environmental cues, such as the geometry of a room. In this study, we sought to examine the extent to which a salient environmental feature influences the formation of spatial memories when learning occurs via a single, static viewpoint and via active navigation, where information has to be integrated across multiple viewpoints. In our study, participants learned the spatial layout of an object array that was arranged with respect to a prominent environmental feature within a virtual arena. Location memory was tested using judgments of relative direction. Experiment 1A employed a design similar to previous studies whereby learning of object-location information occurred from a single, static viewpoint. Consistent with previous studies, spatial judgments were significantly more accurate when made from an orientation that was aligned, as opposed to misaligned, with the salient environmental feature. In Experiment 1B, a fresh group of participants learned the same object-location information through active exploration, which required integration of spatial information over time from a ground-level perspective. As in Experiment 1A, object-location information was organized around the salient environmental cue. Taken together, the findings suggest that the learning condition (static vs. active) does not affect the reference system employed to encode object-location information. Spatial reference systems appear to be a ubiquitous property of spatial representations, and might serve to reduce the cognitive demands of spatial processing.

Highlights

  • Successful navigation in novel environments requires accurate encoding and retrieval of object-location information, both in terms of the positions of salient landmarks in relation to oneself and their positions with respect to one another

  • GENERAL DISCUSSION A growing body of research has found evidence to suggest that object-location representations are organized around reference frames determined by salient environmental cues

  • There is little evidence to indicate the extent to which a salient environmental feature influences the formation of spatial memories when spatial learning occurs via free and active navigation; a scenario more in line with real-world navigation

Read more

Summary

Introduction

Successful navigation in novel environments requires accurate encoding and retrieval of object-location information, both in terms of the positions of salient landmarks in relation to oneself and their positions with respect to one another. To successfully navigate around an unfamiliar city, for example, one needs to identify the locations of street signs, intersections and buildings with respect to one’s current position (“egocentric representations”), as well as the positions of prominent distant landmarks with respect to each other (“allocentric representations”). According to an account proposed by McNamara and colleagues, object-to-object spatial relationships are organized with respect to a specified reference system (Shelton and McNamara, 2001; Mou et al, 2004). The directions or “axes” used for the reference system are biased by factors such as egocentric viewpoint or salient environmental cues, such as the geometry of a room, or the layout of buildings in a city. The purpose of the present study was to examine the extent to which these biases play a role in the formation of spatial memories under differing learning conditions

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.