Abstract

The direct-injection spark-ignition engine has emerged as a focus of research in improving fuel economy and controlling emissions. This engine can operate in multiple modes, including a stratified charge mode with an air-fuel ratio as large as 50:1. Operating in stratified mode results in improved fuel economy and reduced CO/sub 2/ emissions. The stratified charge mode is employed during low speed and load conditions, such as during engine idle. The idle speed control problem is cast as a two-input-two-output control problem and a baseline feedback controller is developed based on an existing topology from the literature. Significant delays, however, inhibit our ability to improve the transient response via feedback alone. An improved scheme employing reference feedforward is proposed and several potential topologies are presented. A reference feedforward algorithm is derived and nonlinear simulation results are shown in which the system transient responses are improved considerably.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.