Abstract

Perturbation methods are common tools for describing wave propagation in weakly anisotropic media. The anisotropic medium is replaced by an average isotropic medium where wave propagation can be treated analytically and the correction for the effect of anisotropy is computed by perturbation techniques. This works well for anisotropies of up to 10%. Some materials (e.g. shales), however, can exhibit a much stronger anisotropy. In this case a background is required which still can be treated analytically but is applicable to stronger P‐wave anisotropy. We present an averaging technique to compute a best‐fitting ellipsoidal medium to an arbitrary anisotropic medium. Ellipsoidal media are sufficiently simple for analytical expressions to be available for many applications and allow consideration of strong P‐wave anisotropy. The averaging of the arbitrary anisotropic medium can be carried out globally (i.e. for the whole sphere) or sectorially (e.g. for seismic waves propagating predominantly in the vertical direction). We derive linear relationships for the coefficients of the ellipsoid which depend on the elastic coefficients of the anisotropic medium. We also provide specifications for best‐fitting elliptical and best‐fitting isotropic media. Numerical examples for different rocks demonstrate the improved approximation of the anisotropic model obtained using the formulae derived, compared with the conventionally used average isotropic medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.