Abstract

Abstract With the advent of the Global Navigation Satellite System (GNSS), the need for precise and highly accurate orbit and clock products becomes crucial in processing GNSS data. Clocks in GNSS observations form the basis of positioning. Their high quality and stability enable high accuracy and the reliability of the obtained results. The clock modelling algorithms are continuously improved; thus, the accuracy of the clock products is evolving. At present, 8 Analysis Centers (ACs) contribute to the International GNSS Service final clock products. These products are based on GNSS observations on a network of reference stations, where for a given day one of the reference station clocks is the reference clock. In this paper, the authors determined the impact of the reference clock on the quality of clock product, especially outliers, for the first time. For this purpose, the multi-GNSS final clock products provided by the Center for Orbit Determination in Europe (CODE) for the period 2014–2021 (1773–2190 GPS week, 2921 days) were analysed. Analysis shows that by applying the Median Absolute Deviation (MAD) algorithm for outlier detection, the Passive Hydrogen Maser (PHM) clock installed on board the GALILEO satellites have the lowest level of noise, whereas the Block IIR GPS satellite launched in 1999 appears to have the highest levels of noise. Furthermore, the GNSS station OHIE3, when used as a reference clock, generates an increase in the level of noise, especially noticeable on the G09 and E03 satellites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.