Abstract

Interfacial modification is crucial for achieving efficient and stable organic solar cells (OSCs). Herein, an N,N-dimethylformamide (DMF) solution-cast poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) interlayer was applied to enhance the efficiency and stability of a range of OSCs, and the underlying mechanism was revealed via morphological and device physics studies. DMF rinse during the P(VDF-TrFE) interlayer casting process strengthens π-π stacking of the active layer with fibril aggregation, optimized phase separation, and vertical component distribution, while the P(VDF-TrFE) interlayer with rich diploes contributes to increased surface potential and internal electric field. The synergistic effect of the P(VDF-TrFE) interlayer and DMF rinse increases the PCEs of PM6:IT-4F, PM6:C5-16, and PM6:L8-BO OSCs from 12.7, 17.9, and 18.2% to 13.1, 18.7, and 18.8%, respectively. Additionally, OSCs containing the P(VDF-TrFE) interlayer also showed improved storage stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call