Abstract

Diagnostic fracture injection tests (DFITs) are performed in low permeability formations to estimate the minimum principal stress, formation pressure, permeability, and other parameters. G-function derivative plots are used for diagnosing fracture closure and “non-ideal” reservoir processes. In this study, we use a discrete fracture network hydraulic fracturing simulator to investigate non-ideal DFIT mechanisms. The simulator fully couples fluid flow with the stresses induced by fracture deformation. DFITs are simulated for six different scenarios: a single hydraulic fracture, multiple fracture strands, opening of transverse fractures, near-wellbore complexity, far-field complexity, and height recession. The results indicate that pressure transient behavior commonly ascribed to “fracture height recession,” “closure of transverse fractures,” and “fracture tip extension” are likely to be misinterpreted by conventional techniques. In previous studies, we found that a curving upward G×dP/dG plot is caused by changing fracture stiffness after closure and that the closure pressure is best picked when G×dP/dG begins to deviate upward. In contrast, the commonly used “tangent” method can significantly underestimate the minimum principal stress. The results of this study confirm those prior results. The results suggest that in most cases, it should be possible to use pump-in/flowback tests to confirm estimates of the minimum principal stress. However, if a flow bottleneck occurs at the wellbore due to near-wellbore complexity, the pump-in/flowback test may be uninterpretable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.