Abstract

Inelastic ${}^{6}$Li scattering at 100 MeV/u on ${}^{12}$C and ${}^{93}$Nb have been measured with the high-resolution magnetic spectrometer Grand Raiden. The magnetic-rigidity settings of the spectrometer covered excitation energies from 10 to 40 MeV and scattering angles in the range $0^\circ < \theta_{\text{lab.}}< 2^\circ$. The isoscalar giant monopole resonance was selectively excited in the present data. Measurements free of instrumental background and the very favorable resonance-to-continuum ratio of ${}^{6}$Li scattering allowed for precise determination of the $E0$ strengths in ${}^{12}$C and ${}^{93}$Nb. It was found that the monopole strength in ${}^{12}$C exhausts $52 \pm 3^\text{(stat.)} \pm 8 ^\text{(sys.)}$\% of the energy-weighted sum rule (EWSR), which is considerably higher than results from previous $\alpha$-scattering experiments. The monopole strength in ${}^{93}$Nb exhausts $92 \pm 4^\text{(stat.)} \pm 10 ^\text{(sys.)}$\% of the EWSR, and it is consistent with measurements of nuclei with mass number of $A\approx90$. Such comparison indicates that the isoscalar giant monopole resonance distributions in these nuclei are very similar, and no influence due to nuclear structure was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call