Abstract

AbstractThe Central American brocket deer (Mazama temama) is widespread across the Mesoamerican forests, yet it remains largely unknown. Three subspecies are recognized currently within M. temama using pelage coloration as the primary diagnostic character. However, it remains unclear if there is any pattern of morphological variation throughout its distribution. We compared two models of morphological subdivision, namely the traditional subspecies and another based on biogeographic provinces via 2D geometric morphometrics and ecological niche modeling. The second model presented a better fit to the observed variation in cranial shape and size. We found divergence in skull size between individuals from Mexico and Guatemala (northern group) relative to specimens from Honduras, Nicaragua, Costa Rica, and Panama (southern group), the latter being 8% larger than the northern group. Centroid size showed a significant correlation with geographic distance suggesting an isolation-by-distance pattern. Low geographical overlap between the two clusters suggests niche conservatism. Late Pleistocene dispersal from South to Central America and differences in available resources with subsequent isolation due to climatic barriers therefore may have promoted differentiation in size albeit without extensive changes in shape. In this context, the Motagua-Polochic-Jolotán fault system probably plays a key role in promoting morphological differentiation by climatic isolation. Finally, we suggest that M. t. temama (Kerr, 1792) and M. t. reperticiaGoldman, 1913 should remain as valid names for the two morphological and ecologically differentiated groups detected here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call