Abstract

By employing EPR spectrometry with the aid of a spin-trapping agent, 5,5-dimethyl-1-pyrroline-1-oxide (DMPO), the generation of superoxide anion and hydroxyl radical was reevaluated during the respiratory burst of porcine and human neutrophils. Properly prepared resting neutrophils did not generate any spin-trapped radical, and, when the cells were stimulated with phorbol myristate acetate, only DMPO-OOH, the spin-trapped adduct of superoxide anion, was detected. No formation of DMPO-OH, the spin-trapped adduct of the hydroxyl radical, was observed. DMPO-OOH was also detected principally when the neutrophils were stimulated with opsonized zymosan, a particulate stimulus. In the latter case, however, the formation of DMPO-OOH ceased shortly after the addition of zymosan and subsequent production of DMPO-OH was observed. The production of DMPO-OH was found to be associated with cell injury. DMPO at the concentration usually used for the experiment (0.045-0.09 M) injured phagocytizing neutrophils, causing lysis of the cells. On the other hand, an addition of cell homogenate or glutathione-glutathione peroxidase system to the suspension of intact cells which were producing DMPO-OOH resulted in the formation of DMPO-OH. Thus, DMPO-OH was probably derived from DMPO-OOH by the action of enzymes and/or factor(s) which were released from the lysed cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call