Abstract
The mechanism by which calcium ions inhibit cell elongation has been reinvestigated. Growth-inhibiting levels of calcium, when applied to isolated walls (in vitro treatment) do not decrease cell wall extensibility as measured by the Instron technique. Thus, the hypothesis that calcium inhibits growth by forming wall-stiffening calcium bridges must be abandoned. Treatment of living auxin-treated sections with calcium (in vivo treatment) does cause a decrease in the subsequently measured wall extensibility, but this decline appears to be simply a consequence of the growth inhibition rather than its cause. Growth-inhibiting levels of calcium do not appreciably reduce the rate of auxin-enhanced H(+) excretion. Pretreatment with calcium does not reduce the capacity of walls to undergo acid-activated wall loosening in the absence of calcium. High concentrations of CaCl(2) (0.02 m) cause an initial elastic shrinkage of Avena sections comparable to that caused by the same osmolarity of mannitol, but the subsequent growth inhibition is too great to be explained by an osmotic inhibition. Calcium ions do inhibit H(+)-induced extension of frozen-thawed sections under tension. The growth-inhibitory effects of calcium, then, may be ascribed to a direct inhibition exerted by calcium ions on the H(+)-induced wall-loosening process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.