Abstract

Species delimitation methods based on genetic information, notably using single locus data, have been proposed as means of increasing the rate of biodiversity description, but can also be used to clarify complex taxonomies. In this study, we explore the species diversity within the cnidarian genus Pocillopora, widely distributed in the tropical belt of the Indo-Pacific Ocean. From 943 Pocillopora colonies sampled in the Western Indian Ocean, the Tropical Southwestern Pacific and Southeast Polynesia, representing a huge variety of morphotypes, we delineated Primary Species Hypotheses (PSH) applying the Automatic Barcode Gap Discovery method, the Poisson Tree Processes algorithm and the Generalized mixed Yule-coalescent model on two mitochondrial markers (Open Reading Frame and Dloop) and reconstructing a haploweb using one nuclear marker (Internal Transcribed Spacer 2). Then, we confronted identified PSHs to the results of clustering analyses using 13 microsatellites to determine Secondary Species Hypotheses (SSH). Based on the congruence of all methods used and adding sequences from the literature, we defined at least 18 Secondary Species Hypotheses among 14 morphotypes, confirming the high phenotypic plasticity in Pocillopora species and the presence of cryptic lineages. We also identified three new genetic lineages never found to date, which could represent three new putative species. Moreover, the biogeographical ranges of several SSHs were re-assessed in the light of genetic data, which may have direct implications in conservation policies. Indeed, the cryptic diversity within this genus should be taken into account seriously, as neglecting its importance is source of confusion in our understanding of ecosystem functioning. Next generation sequencing, combined with other parameters (i.e. microstructure, zooxanthellae identification, ecology even at a micro-scale, resistance and resilience ability to bleaching) will be the next step towards an integrative framework of Pocillopora taxonomy, which will have profound implications for ecological studies, such as studying biodiversity, response to global warming and symbiosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.