Abstract
The Greenland ice sheet, the second largest glacier in the world after the Antarctic ice sheet, is losing its mass significantly since the 21st century. Although Ice, Cloud, and land Elevation Satellite (ICESat) has been successfully applied to detect changes in the elevation of the Greenland ice sheet since its launch in 2003, there are larger uncertainty to retrieve the glacier height in the altimetry data processing. In this paper, we use repeat-tracks method with slope correction to re-process ICESat data from 2003–2008 and estimate the mass changes of Greenland ice sheet. The elevation change results varies from about −2 m/yr up to 1.5 m/yr. The well-pronounced height decrease are clearly visible in the catchment area of J akobshavn Isbrae glacier (north-western), the Helheim and Kangerdlugssuaq glaciers (south-eastern), where the elevation change rate reaches a remarkable amount of more than −2 m/yr. The elevation change rate is around zero in the northern area of the Greenland ice sheet. The elevation change rates in most of the inland arears are slightly positive with about 0.02m/yr, indicating that there are small amount of ice mass accumulation. The volume change rate of the whole Greenland ice sheet is −237.65km3/yr by the repeat-track plane fitting method from the ICESat elevation measurements. The volume change rate of the whole Greenland ice sheet is −198.54km3/r by the repeat-track with slope correction, which has a good agreement with GRACE measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.