Abstract
In a recent paper [HI2] the first named author and S. Ikeda have investigated Gorenstein properties under blowing up of height two equimultiple ideals from the arithmetical point of view. The problem is to what extent does the Gorenstein property of the Rees algebra R(a) = of an equimultiple ideal a of a local ring (A, m) describe the structure of A and a. One result is that if A is a generalized Cohen-Mac aulay ring (i.e. a ring of finite local cohomology) with dim (A) ⊇ 4 and if there is an height two equimultiple prime ideal p such that R(p) is Gorenstein, then A is Gorenstein and p is generated by a regular sequence (see [HI2], Theorem 2.6). That has led to the question whether this result is still valid for dim (∧) = 3. ∧ partial answer was given in [HI2], Proposition 2.10, where “equimultiplicity” was replaced by the stronger condition “p/p2 is flat over A/p”
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.