Abstract
The six members of the Receptor Expression Enhancing Protein (REEP) family were originally identified based on their ability to enhance heterologous expression of olfactory receptors and other difficult to express G protein-coupled receptors. Interestingly, REEP1 mutations have been linked to neurodegenerative disorders of upper and lower motor neurons, hereditary spastic paraplegia (HSP) and distal hereditary motor neuropathy type V (dHMN-V). The closely related REEP2 isoform has not demonstrated any such disease linkage. Previous research has suggested that REEP1 mRNA is ubiquitously expressed in brain, muscle, endocrine, and multiple other organs, inconsistent with the neurodegenerative phenotype observed in HSP and dHMN-V. To more fully examine REEP1 expression, we developed and characterized a new REEP1 monoclonal antibody for both immunoblotting and immunofluorescent microscopic analysis. Unlike previous RT-PCR studies, immunoblotting demonstrated that REEP1 protein was not ubiquitous; its expression was restricted to neuronal tissues (brain, spinal cord) and testes. Gene expression microarray analysis demonstrated REEP1 and REEP2 mRNA expression in superior cervical and stellate sympathetic ganglia tissue. Furthermore, expression of endogenous REEP1 was confirmed in cultured murine sympathetic ganglion neurons by RT-PCR and immunofluorescent staining, with expression occurring between Day 4 and Day 8 of culture. Lastly, we demonstrated that REEP2 protein expression was also restricted to neuronal tissues (brain and spinal cord) and tissues that exhibit neuronal-like exocytosis (testes, pituitary, and adrenal gland). In addition to sensory tissues, expression of the REEP1/REEP2 subfamily appears to be restricted to neuronal and neuronal-like exocytotic tissues, consistent with neuronally restricted symptoms of REEP1 genetic disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.