Abstract
A major design challenge for re-entry capsules lies in the modelling of convective and radiative heat transfer to the surface of the vehicle. At certain points on superorbital re-entry trajectories, up to 40% of the total radiative heat flux is contributed by the vacuum ultra-violet (VUV) spectral range and it is in this spectral range that the largest uncertainties lie. The high level of uncertainty in the VUV is a result of a lack of published experimental data due to difficulties encountered in measuring radiation in the VUV, such as strong absorption by most optical materials and air. Additional complexities of the VUV spectral range include its strongly self-absorbing nature and spectral line broadening. The primary goal of this study was to obtain calibrated spectral measurements in the VUV that enable the investigation of physical processes occurring in the shock layer that influence the incident radiative heat flux. In particular, the issues to be investigated were the variation in spectral radiance observed across a shock layer compared to the spectral radiance measured through the surface, the effects of self-absorption on spectral line intensity and the broadening of spectral lines in the VUV as a function of depth of radiating flow field. The measurements made across and through the surface of a model provide the first set of calibrated experimental results for the validation of computational codes used to predict incident radiative heat flux. Measurements made with a varying depth of radiating flow field provide a unique set of experimental data for the validation of radiation transport models and broadening coefficients. This study also used computational simulations to investigate the accuracy of a flow field solver coupled with two reaction rate schemes and compared the spectra produced using Specair with experimentally measured values. To achieve these goals, an optical system was designed to measure the VUV radiative emission produced around a blunt two-dimensional model in a spatially resolved manner across the shock layer. Spatial resolution allowed for spectral measurements to be made in both the equilibrium and non-equilibrium parts of the shock layer. A second optical system was designed to obtain measurements of VUV radiation incident on the surface of the model. This system incorporated a window in the surface with a mirror housed within the model to deflect the radiation out of the test section and into the detection system. To effectively vary the depth of the radiating flow field, the length of a two-dimensional model was varied, changing the depth of the shock layer being observed. The X2 expansion tube was used to create the high enthalpy flows required to produce radiating shock layers. Two flow conditions were created for this study that represented flight equivalent velocities of 10.0 km/s and 12.2 km/s. The spectroscopy system utilized for this study consisted of an evacuated McPherson NOVA 225 spectrometer coupled to an Andor iStar VUV enhanced intensified charge coupled device. An evacuated light tube sealed with a magnesium fluoride window was required to extend the evacuated light path to the model and avoid any absorption by molecular oxygen. An in-situ calibration of the VUV spectroscopy system was conducted using a deuterium lamp located in the position of the radiating shock layer. The integrated incident spectral radiance measured through the surface of the model between 115 nm and 180 nm was 0.744 W/cm2 sr for the 10.0 km/s condition and 12.3 W/cm2sr for the faster 12.2km/s condition. [...]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.