Abstract

This paper presents a new reentry guidance algorithm for RLV (Reusable Launching Vehicle). The algorithm consists of two integrated components: trajectory planning algorithm and tracking algorithm. The most striking feature of algorithm here lies in that both planning and tracking are executed directly in height-velocity space, which is different from the methodology of configuration of drag in traditional shuttle guidance. In the session of trajectory planning, all trajectory constraints can be expressed with upper bound and lower bound in height-velocity space, then a linear interpolation is carried to search the nominal trajectory satisfying the requirement of downrange and target constraints. Then the tracking algorithm uses feedback linearization method to track this nominal profile and meet all constraints. Another typical feature of this algorithm is the strategy of downrange extension using FPA (flight path angle) controller to fulfill the requirement of large downrange. Proper combination of planning-tracking algorithm and FPA controller can bring great flexibility and adaptability to reentry guidance. The algorithm is proved to be robust enough to accommodate the model error and noises in the dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.