Abstract
We show that correlations in strongly interacting many-particle systems can create quantum decoherence, leading to a mechanism of dissipation that does not rely on an external source. Using analytical methods, we study a bosonic many body system in two dimensions, with extended interactions between particles. We show that, as expected, the system can be driven out of a coherent state. Surprisingly, when the interaction strength is sufficiently large, the system reenters the superfluid phase even after coherence is lost. The breakdown of quantum coherence is a certainty, but interpreting the process correctly relies on understanding and preserving the nature of the coupling between the constituents of the many particle system. The methods used provide a natural cutoff point at the critical temperature, where superfluidity breaks down.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.