Abstract

Systems with quasiperiodic disorder are known to exhibit a localization transition in low dimensions. After a critical strength of disorder, all the states of the system become localized, thereby ceasing the particle motion in the system. However, in our analysis, we show that in a one-dimensional dimerized lattice with staggered quasiperiodic disorder, after the localization transition, some of the localized eigenstates become extended for a range of intermediate disorder strengths. Eventually, the system undergoes a second localization transition at a higher disorder strength, leading to all states being localized. We also show that the two localization transitions are associated with the mobility regions hosting the single-particle mobility edges. We establish this reentrant localization transition by analyzing the eigenspectra, participation ratios, and the density of states of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call