Abstract

We calculate the breathing mode frequency $\omega$ in a one-dimensional Bose gas confined to a harmonic trap of frequency $\omega_z$. We predict Exciting temporal oscillations of the density distribution is a high-precision method for probing ultracold trapped atomic gases. Interaction effects in their many-body dynamics are particularly puzzling and counter-intuitive in one spatial dimension (1D) due to enhanced quantum correlations. We consider 1D quantum Bose gas in a parabolic trap at zero temperature and explain, analytically and numerically, how oscillation frequency depends on the number of particles, their repulsion and the trap strength. We identify the frequency with the energy difference between the ground state and a particular excited state. This way we avoided resolving the dynamical evolution of the system, simplifying the problem immensely. We find an excellent quantitative agreement of our results with the data from the Innsbruck experiment [Science 325, 1224 (2009)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.