Abstract
Poly(sodium styrenesulfonate) (PSSNa) chains have been grafted onto a SiO(2)-coated resonator surface. The conformational changes of grafted chains have been investigated using a quartz crystal microbalance with dissipation (QCM-D) in the presence of monovalent or multivalent salts as a function of ionic strength. In the case of monovalent counterions, the changes in frequency (Δf) and dissipation (ΔD) indicate that the highly extended PSSNa chains first shrink into a loose and inhomogeneous layer as the ionic strength increases. As the ionic strength increases further, the chains will collapse and form a denser and more homogeneous layer. In the case of divalent or trivalent counterions, the grafted PSSNa chains also collapse into a dense layer as the ionic strength increases. However, when the ionic strength is above a critical value, the chains would re-expand so that the layer becomes partially extended due to the charge inversion. Additionally, the effect of ion-specificity on the conformational changes of the chains has also been examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.