Abstract
Inspired from the vehicular traffic scenarios, including the companionship of two consecutive speed bumps placed within a sufficient distance on the road, we investigate a bidirectional two-lane symmetrically coupled totally asymmetric simple exclusion process with two bottlenecks in the presence of Langmuir kinetics. The steady-state system dynamics in terms of density profiles, phase diagrams, phase transitions, and shock dynamics are investigated thoroughly, exploiting hybrid mean-field theory with various strengths of the bottleneck and lane changing rates which match well with Monte Carlo simulation outcomes. It has been detected that the qualitative and quantitative topology of phase diagrams crucially depend on bottleneck and lane switching rate, emanating in monotonic as well as non-monotonic alterations in the number of steady-state phases. We observe that the effect of the bottlenecks is weakened for the increasing values of the lane changing rate. The proposed study provides many novel mixed phases resulting in bulk-induced phase transitions. The interplay between bottlenecks, lane switching, bidirectional movement, and Langmuir kinetics produces unique phenomena, including reentrance transition and phase division of mixed shock region for comparatively lower lane switching rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.