Abstract

Arthropod-borne apicomplexan pathogens that cause asymptomatic persistent infections present a significant challenge due to their life-long transmission potential. Although anti-microbials have been used to ameliorate acute disease in animals and humans, chemotherapeutic efficacy for apicomplexan pathogen elimination from a persistently infected host and removal of transmission risk is largely unconfirmed. The recent re-emergence of the apicomplexan Theileria equi in U.S. horses prompted testing whether imidocarb dipropionate was able to eliminate T. equi from naturally infected horses and remove transmission risk. Following imidocarb treatment, levels of T. equi declined from a mean of 104.9 organisms/ml of blood to undetectable by nested PCR in 24 of 25 naturally infected horses. Further, blood transfer from treated horses that became nested PCR negative failed to transmit to naïve splenectomized horses. Although these results were consistent with elimination of infection in 24 of 25 horses, T. equi-specific antibodies persisted in the majority of imidocarb treated horses. Imidocarb treatment was unsuccessful in one horse which remained infected as measured by nested PCR and retained the ability to infect a naïve recipient via intravenous blood transfer. However, a second round of treatment eliminated T. equi infection. These results support the utility of imidocarb chemotherapy for assistance in the control and eradication of this tick-borne pathogen. Successful imidocarb dipropionate treatment of persistently infected horses provides a tool to aid the global equine industry by removing transmission risk associated with infection and facilitating international movement of equids between endemic and non-endemic regions.

Highlights

  • Effective strategies to control and eradicate arthropod-borne infectious diseases in animals and humans remain elusive [1,2,3,4]

  • Iatrogenic blood transfer that transmitted T. equi, resulted in outbreaks of equine piroplasmosis associated with unsanctioned horse racing in Florida in 2008 [18]

  • Infected T. equi carrier horses without overt signs of infection represent a source of pathogen for iatrogenic and/or tick transmission to susceptible horses [14,17]

Read more

Summary

Introduction

Effective strategies to control and eradicate arthropod-borne infectious diseases in animals and humans remain elusive [1,2,3,4]. Among the apicomplexan protozoan parasites, Theileria equi, closely related to bovine pathogens such as Babesia bovis and other Theileria spp, exemplifies this disease pattern [11,13,14,15]. This tick-borne pathogen of horses can cause severe acute disease characterized by fever, anemia, hemoglobinuria and in some cases death. Infected horses that recover from acute infection become persistently infected for life with parasite loads ranging from 103 to 106 T. equi/ml of blood [14,16,17] These persistently infected horses serve as sources of iatrogenic and tick-borne transmission [14,17]. In 2009, an outbreak of equine piroplasmosis in Texas was associated with natural transmission by Amblyomma cajennense and Dermacentor variabilis ticks, both of which are known biological vectors for T. equi [19,20]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call