Abstract
Longitudinal data refer to the situation where repeated observations are available for each sampled object. Clustered data, where observations are nested in a hierarchical structure within objects (without time necessarily being involved) represent a similar type of situation. Methodologies that take this structure into account allow for the possibilities of systematic differences between objects that are not related to attributes and autocorrelation within objects across time periods. A standard methodology in the statistics literature for this type of data is the mixed model, where these differences between objects are represented by so-called effects that are estimated from the data (population-level relationships are termed fixed effects, together resulting in a mixed model). This paper presents a methodology that combines the structure of mixed models for longitudinal and clustered data with the flexibility of tree-based estimation methods. We apply the resulting estimation method, called the RE-EM tree, to pricing in online transactions, showing that the RE-EM tree is less sensitive to parametric assumptions and provides improved predictive power compared to linear models with random and regression trees without random effects. We also apply it to a smaller data set examining accident fatalities, and show that the RE-EM tree strongly outperforms a tree without random while performing comparably to a linear model with random effects. We also perform extensive simulation experiments to show that the estimator improves predictive performance relative to regression trees without random and is comparable or superior to using linear models with random in more general situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.