Abstract
The expression of reelin messenger ribonucleic acid (mRNA) was studied during embryonic brain development in the turtle Emys orbicularis, by using radioactive in situ hybridization. A high expression was consistently found in the olfactory bulb and in a few neurons in the marginal zone and, to a lesser extent, in the subplate of the dorsal and medial cortical sectors. In the diencephalon, the ventral division of lateral geniculate nuclei and the prospective reticular thalamic nuclei were strongly positive. High reelin signal was also associated with some layers of the tectum and with the external granule cell layer of the cerebellum. A more moderate signal was detected in the septal nuclei, striatum, dorsal ventricular ridge, retina, habenular nuclei, and hypothalamus, and in some reticular nuclei of the midbrain and hindbrain and in ventral spinal cord. The cortical plate, basal forebrain, amygdala, and tegmentum were weakly labeled. When they are compared to reelin expression during mammalian brain development, our data reveal an evolutionarily conserved canvas of reelin expression and significant differences, particularly in developing cortical fields. Most significantly, the developing turtle cortex does not display the heavy reelin expression in subpial Cajal-Retzius cells that is so typical of its mammalian counterpart. Given the key role of reelin in laminar cortical development, our data suggest that the increase in the number of reelin-producing cells and/or the amplification of reelin expression in the cortical marginal zone might have been a driving factor during the evolution of the laminated cerebral cortex from stem reptiles to mammals, as indicated in previous comparative analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.