Abstract

The Reeh-Schlieder theorem asserts the vacuum and certain other states to be spacelike superentangled relative to local quantum fields. This motivates an inquiry into the physical status of various concepts of localization. It is argued that a covariant generalization of Newton-Wigner localization is a physically illuminating concept. When analyzed in terms of nonlocally covariant quantum fields, creating and annihilating quanta in Newton-Wigner localized states, the vacuum is seen to not possess the spacelike superentanglement that the Reeh-Schlieder theorem displays relative to local fields, and to be locally empty as well as globally empty. Newton-Wigner localization is then shown to be physically interpretable in terms of a covariant generalization of the center of energy, the two localizations being identical if the system has no internal angular momentum. Finally, some of the counterintuitive features of Newton-Wigner localization are shown to have close analogues in classical special relativity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.