Abstract

There has been a marked increase in the number of artificial reefs being deployed around the world, many of which are designed to increase catches of recreationally-targeted fish species. As artificial reef deployments should be accompanied by clear and measurable goals and thus subsequent environmental impact monitoring and performance evaluation, there is a need to develop cost-effective monitoring programs. This study provides proof of concept for a citizen science approach to monitoring the fish faunas of artificial reefs (Reef Vision). Recreational fishers were recruited to collect video samples using Baited Remote Underwater Video systems and submit the resultant footage for analysis and interpretation by professional scientists. Reef Vision volunteers were able to collect enough data of sufficient quality to monitor the Bunbury and Dunsborough artificial reefs in Geographe Bay, south-western Australia. Data were extracted from the footage and used in robust univariate and multivariate analyses, which determined that a soak time of 45 min was sufficient to capture ≥ 95% of the number of species, abundance, diversity and composition of the fish fauna. The potential for these data to detect differences in the characteristics of the fish fauna between reefs and seasons was also investigated and confirmed. With the continuing deployment of artificial reefs around the world, the use of similar cost-effective citizen science monitoring approaches can help determine the effectiveness of these structures in achieving their aims and goals and provide valuable data for researchers, managers and decision makers. Projects such as Reef Vision can also benefit volunteers and communities by enhancing social values, creating ownership over research projects and fostering stewardship of aquatic resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call