Abstract
Generalized multilevel constructions for binary RM(r,m) codes using projections onto GF(2 q ) are presented. These constructions exploit component codes over GF(2), GF(4),..., GF(2 q ) that are based on shorter Reed-Muller codes and set partitioning using partition chains of length-2 l codes. Using these constructions we derive multilevel constructions for the Barnes-Wall ?(r,m) family of lattices which also use component codes over GF(2), GF(4),..., GF(2 q ) and set partitioning based on partition chains of length-2 l lattices. These constructions of Reed-Muller codes and Barnes-Wall lattices are readily applicable for their efficient decoding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.