Abstract

Recent studies indicate that the energy cost and carbon footprint of data centers have become exorbitant. It is a demanding and challenging task to reduce energy consumption in large-scale storage systems in modern data centers. Most energy conservation techniques inevitably have adverse impacts on parallel disk systems. To address the reliability issues of energy-efficient parallel disks, we propose a reliable energy-efficient RAID system called REED, which aims at improving both energy efficiency and reliability of RAID systems by seamlessly integrating HDDs and SSDs. At the heart of REED is a high-performance cache mechanism powered by SSDs, which are serving popular data. Under light workload conditions, REED spins down HDDs into the low-power mode, thereby offering energy conservation. Importantly, during an I/O access turbulence (i.e., I/O load is dynamically and frequently changing), REED is conducive to reducing the number of disk power-state transitions by keeping HDDs in the low-power mode while serving requests with SSDs. We build a model to quantitatively show that REED is capable of improving the reliability of energy-efficient RAIDs. We implement the REED prototype in a real-world RAID-0 system. Our experimental results demonstrate that REED improves the energy-efficiency of conventional RAID-0 by up to 73% while maintaining good reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.