Abstract

We analyzed the Ree-Eyring fluid flow between two stretchable spinning disk with various stretching rates along with copper–water nanoliquids. An impact of thermophoresis and Brownian motion and thermal radiation effect also investigated properly. Appropriate transformations are applied to change highly coupled non-linear system of PDE to coupled ODE associate with convective boundary conditions, which is then attained numerically via utilizing Runge–Kutta-Felberg method with shooting technique. The behavior of significant parameters on the distribution function of temperature, concentration and velocity has been clarified via sketch in detail. Clearly, It is carried out that the Brownian motion parameter Nb elevates by more heat produced via collision of nanoparticles randomly. So field of temperature and boundary layer thickness also enlarged. Lastly, heat transfer rate hikes at upper one as well as decays at lower one along with large amount of Weissenberg number and thermophoresis parameter respectively. The outputs are estimated with previously published work and found to be an excellent conformity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.