Abstract
In this paper, we propose a new redundant wavelet transform applicable to scalar functions defined on high dimensional coordinates, weighted graphs and networks. The proposed transform utilizes the distances between the given data points. We modify the filter-bank decomposition scheme of the redundant wavelet transform by adding in each decomposition level linear operators that reorder the approximation coefficients. These reordering operators are derived by organizing the tree-node features so as to shorten the path that passes through these points. We explore the use of the proposed transform to image denoising, and show that it achieves denoising results that are close to those obtained with the BM3D algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.