Abstract

The host innate immune system has developed elegant processes for the detection and clearance of invasive fungal pathogens. These strategies may also aid in the spread of pathogens in vivo, although technical limitations have previously hindered our ability to view the host innate immune and endothelial cells to probe their roles in spreading disease. Here, we have leveraged zebrafish larvae as a model to view the interactions of these host processes with the fungal pathogen Candida albicans in vivo. We examined three potential host-mediated mechanisms of fungal spread: movement inside phagocytes in a “Trojan Horse” mechanism, inflammation-assisted spread, and endothelial barrier passage. Utilizing both chemical and genetic tools, we systematically tested the loss of neutrophils and macrophages and the loss of blood flow on yeast cell spread. Both neutrophils and macrophages respond to yeast-locked and wild type C. albicans in our model and time-lapse imaging revealed that macrophages can support yeast spread in a “Trojan Horse” mechanism. Surprisingly, loss of immune cells or inflammation does not alter dissemination dynamics. On the other hand, when blood flow is blocked, yeast can cross into blood vessels but they are limited in how far they travel. Blockade of both phagocytes and circulation reduces rates of dissemination and significantly limits the distance of fungal spread from the infection site. Together, this data suggests a redundant two-step process whereby (1) yeast cross the endothelium inside phagocytes or via direct uptake, and then (2) they utilize blood flow or phagocytes to travel to distant sites.

Highlights

  • Candida albicans is a small non-motile fungus that can cause disseminated candidiasis in immunocompromised populations

  • C. albicans was previously suspected of being an extracellular pathogen based on in vitro challenges, intravital imaging in the zebrafish model has suggested that it can establish an impasse with macrophages that is a prerequisite for migration from the infection site [13]

  • C. albicans yeast dissemination from localized infection is preceded by innate immune cell recruitment

Read more

Summary

Introduction

Candida albicans is a small non-motile fungus that can cause disseminated candidiasis in immunocompromised populations. Bacterial and fungal pathogens utilize the host’s immune cells in a “Trojan Horse” mechanism to spread to outlying tissues, stimulating engulfment, surviving within the phagocyte for sufficient time to allow migration away from the infection, provoking release from the phagocyte. Both in vitro and zebrafish disease models have been used to demonstrate how neutrophils [8] and macrophages [9,10,11,12] can be vehicles for dissemination for mycobacterium, Cryptococcus and Streptococcus. C. albicans was previously suspected of being an extracellular pathogen based on in vitro challenges, intravital imaging in the zebrafish model has suggested that it can establish an impasse with macrophages that is a prerequisite for migration from the infection site [13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call