Abstract

Robotic machining has obtained growing attention recently because of the low cost, high flexibility and large workspace of industrial robots (IRs). Multiple degrees of freedom of IRs improve the dexterity of machining while causing the problem of redundancy. Meanwhile, the performance of IRs, such as their stiffness and dexterity, is affected by their position and posture obviously. Therefore, a redundant posture optimization method for robotic milling is proposed to improve the machining performance of the robot. The multiple characteristics of the robot are considered, including the joint-limit, singularity and stiffness, which have symmetry in its workspace. Firstly, the joint-limit is regarded as the constraint. And a symmetrical and effective constraint method is proposed to simply guarantee that all the interpolation points can avoid joint interference. Then, the performance indices of singularity and stiffness are designed as the optimization target. On this basis, the piecewise-global-optimization-strategy (PGOS) is proposed for redundant optimization. Owning to the PGOS, all the given planned tool points in their corresponding segment are considered simultaneously to avoid the gradual deterioration in traditional methods, which is especially suitable for the machining process with a continuous path. Moreover, the computational load of the optimization solution is considered and limited by the designed segmentation strategy. Finally, a series of comparative simulations are conducted to validate the good performance of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call